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Despite the active development community surrounding Spark, 
and the popularity of distributed computing research, adoption in 
genomic research is stagnated by unclear cost assessments 
surrounding computational resources necessary for a specific 
analysis and the lack of familiarity with distributed computing 
frameworks among bioinformaticians (Krissaane). 

In this study we provided a test harness to help elucidate the cost 
of cloud computing with Spark and AWS EMR for future analysis, 
and provided a method to optimize cluster size selection. Using the 
Research Data Platform, we provided a scalable end-to-end 
pipeline for polygenic risk score calculation, demonstrating the 
effectiveness and viability of cloud based distributed computing. To 
further assist the transition for bioinformaticians and developers 
unfamiliar with PySpark, but with a working knowledge of popular 
python libraries such as numpy and pandas, we provide a tutorial 
and companion guide to describe fundamental concepts and  
demonstrate common transformations in Spark. 

Conclusion

Future work may focus on abstracting away cluster size selection from the 
user, potentially through an auto scaling mechanism, where computation is 
allocated dynamically based on size of load during runtime.  Another point 
of discussion is whether the Spark SQL DataFrame API is an ideal 
selection for most users. Databrick’s Koalas python package, leverages the 
Spark SQL Dataframe API under the hood, but exposes pandas-like syntax 
to the user. More recently Databrick released Pandas API on Spark to 
make transitioning simpler. A future study could investigate whether there 
are performance trades when interacting with a Spark cluster through 
PySpark vs Pandas API on Spark. 

Recommendations

This analysis attempts to elucidate the performance and costs related 
to genomic data analysis on cloud-distributed systems. Leveraging 
technologies such as Snowflake, Apache Spark, Python and AWS 
EMR, with the goal to establish a robust, scalable, performant pipeline 
to ingest, explore, and analyze genomic data with flexible and easy-to-
use access to distributed computing resources. 

To determine cost per distributed infrastructure configuration 
considering runtime, PySpark code, was evaluated by testing the 
performance of genomic data operations across a number of 
configurable parameters. This test harness can be used as a proxy to 
help evaluate the infrastructure requirements of future datasets of 
arbitrary size. 

This study also provides an analysis demonstrating robust and 
scalable polygenic risk score determination of available WGS data and 
COVID-19 Host Genetics Initiative individual-level and clinical 
phenotypes data using PySpark through the Research Data Platform. 
This allows for direct comparison between distributed Spark and non-
distributed Pandas frameworks in the context of a common analysis 
used in the diagnostic genomics industry.

Abstract

Evolution in high-throughput next-generation sequencing (NGS) 
technologies now allows for inexpensive production of massive amounts of 
genetic data (Gkazi). Managing the economic and technological resources 
necessary to take advantage of data generated from NGS can be a 
bottleneck in proteomic, genomic,and transcriptomic research (Gkazi).  
More specifically these challenges include properly allocating 
computational resources required for affordable long-term storage, and fast 
and scalable data processing and analysis while still supporting permission 
based data sharing, and efficient data retrieval (Pan). 

Cloud distributed computing frameworks enable scalable, reliable, efficient 
and relatively low cost computing leveraging multi-server networked 
clusters. (Maarala) While parallel data analysis with multiple distributed 
computer nodes brings huge performance advantages compared to 
standalone machines, (Maarala), costs related to genomic specific analysis 
remain difficult to pin down, potentially preventing adoption by researchers 
in the community.(Gkazi) 

Introduction

Table 1. Dataset used to develop the Research Data Platform test harness

Data

Spark Cluster Configuration and 
Benchmarking 

The architecture specific benchmarking is 
conducted by executing code on a PySpark 
notebook in a Jupyter Lab instance deployed 
on an Amazon Web Services Elastic Map-
Reduce c12(EMR) managed Spark cluster. 
The EMR cluster version is 6.0.0, and the 
Spark version is 2.4.1. Configurable cluster 
parameters include cluster size, number of 
works, types of workers, and memory 
allocation across workers such as partition 
size, memory storage location and caching 
method (memory, disk or both).  

The Research Data Platform Test Harness 
evaluates each of the Spark Executor 
storage memory levels for ideal serialization. 
These storage levels include “memory only”, 
“memory only serialized”, “memory and disk”, 
“memory and disk serialized”, and “disk only”. 
The RDP Test Harness also allows 
evaluating the performance differences 
between default partitioning, partitioning by 
chunk-size or by key. 

Methodology

As an initial proxy to understand the efficiency of genomic data analyses, such as 
polygenic risk score calculation, on AWS EMR Spark clusters, we analyzed the 
total cost and runtime required to complete the RDP Test Harness correlation 
assessment based on cluster configuration. 

Results

Dataset Number of Rows Total Size Total Samples

TCGA Sample ~8 Billion ~225 GB N/A

Dataset Number of Rows Raw Dataset Size Unique Variants Total Samples

COVID-19 WGS 
Samples ~1.5 Billion ~379 GB N/A 172

WGS Samples ~32 Billion 4.5 TB ~84 million 379

Host Genetics 
Initiative COVID-19 

Phenotypic Data
1009 50MB 1009 304

Table 2. Datasets used to develop the Polygenic Risk Score tutorial using Spark

(Gkazi)

Polygenic Risk Score Analysis 

The polygenic risk score analysis was conducted in the same RDP 
generated PySpark  notebook in a Jupyter Lab instance deployed on an 
Amazon Web Services Elastic Map-Reduce managed Spark cluster. WGS 
data was queried using the Python-Snowflake connector from the RDP 
broker and joined with COVID-19 Casanova Lab independent case/control 
cohort. A series of User-Defined Functions were created in PySpark to 
transform the data to prepare for linkage-disequilibrium calculation or 
correlation between inherited variants. The resulting linkage-disequilibrium 
matrix was filtered for individual variants which are inherited approximately 
independently. The polygenic risk score was then computed from the beta 
parameters for the subset of extracted variants and the LD-subset. The 
phenotypic information describing case outcome (ambulatory or 
hospitalization) related to each individual was merged. 

In the figure below, comparing the results for “m4.4xlarge” illustrates how 
influential optimized partitioning can be on performance, with the default 
partitioning costing ~ 3x less and in the worst case scenario, being nearly 5x 
faster. It was also noted that selecting a larger cluster or increasing the number of 
workers was an effective strategy, as it decreased total time of computation and 
consequently, total cost  (Krissaane). Moving forward to the polygenic risk score 
analysis, we select an instance “m4.4xlarge”, with 4 workers. 

Fig.1 Each point on the plot represents a configuration evaluated. Executor 
and driver memory was allocated as follows for workers of the following 
instance size;  ‘m4.2xlarge’: 20GBs, ‘m4.4xlarge’ : 46GBs, ‘m5.8xlarge’: 
148GBs.  Instance cost per hour was collected from AWS EC2 pricing guide. A 
more detailed description of the configurations can be found in Table 3. and the 
appendix attached.


